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Abstract 1 

 2 

The twelve weather and climate models participating in the Global Land-Atmosphere Coupling 3 

Experiment (GLACE) show both a wide variation in the strength of land-atmosphere coupling 4 

and some intriguing commonalities.  In this paper, we address the causes of variations in 5 

coupling strength – both the geographic variations within a given model and the model-to-model 6 

differences.  The ability of soil moisture to affect precipitation is examined in two stages, namely, 7 

the ability of the soil moisture to affect evaporation, and the ability of evaporation to affect 8 

precipitation.  Most of the differences between the models and within a given model are found to 9 

be associated with the first stage – an evaporation rate that varies strongly and consistently with 10 

soil moisture tends to lead to a higher coupling strength.  The first stage differences reflect 11 

identifiable differences in model parameterization and model climate.  Intermodel differences in 12 

the evaporation-precipitation connection, however, also play a key role. 13 
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1. Introduction 1 

Interaction between the land and atmosphere plays an important role in the evolution of 2 

weather and the generation of precipitation.  Soil moisture may be the most important state 3 

variable in this regard. Much research has been conducted on the effects of soil wetness 4 

variability on weather and climate, encompassing various observational studies (e.g., Namais 5 

1960; Betts et al. 1996; Findell and Eltahir 2003) and theoretical treatments (e.g., Entekhabi et al 6 

1992, Eltahir 1998).  These studies notwithstanding, the strength of land-atmosphere interaction 7 

is tremendously difficult to measure and evaluate.  Consider, for example, attempts to quantify 8 

the impact of soil moisture on precipitation through joint observations of both.  Precipitation may 9 

be larger when soil moisture is larger, but this may tell us nothing, for the other direction of 10 

causality – the wetting of the soil by precipitation – almost certainly dominates the observed 11 

correlation.  Global-scale or even regional-scale estimates of land-atmosphere coupling strength 12 

simply do not exist. 13 

This difficulty motivates the use of numerical climate models to address the land-14 

atmosphere feedback question.  With such models, idealized experiments can be crafted and 15 

sensitivities carefully examined. A few recent examples include the studies of Dirmeyer (2001), 16 

Koster and Suarez (2001), Schlosser and Milly (2002), and Douville (2003). 17 

Modeling studies, of course, are far from perfect.  The ability of land states to affect 18 

atmospheric states in atmospheric general circulation models (AGCMs) is not explicitly 19 

prescribed or parameterized, but is rather a net result of complex interactions between numerous 20 

process parameterizations in the model.  As a result, land-atmosphere interaction varies from 21 

model to model, and this model dependence affects AGCM-based interpretations of land use 22 
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impacts on climate, soil moisture impacts on precipitation predictability, and so forth (Koster et 1 

al. 2002). The broad usage of GCMs for such research and the need for an appropriate 2 

interpretation of model results makes necessary a comprehensive evaluation of land-atmosphere 3 

interaction across a broad range of models. The Global Land-Atmosphere Coupling Experiment 4 

(GLACE) was designed with this in mind. 5 

In GLACE, twelve AGCMs perform the same highly-controlled numerical experiment, 6 

an experiment designed to characterize quantitatively the general features of land-atmosphere 7 

interaction.  In GLACE, three 16-member ensembles of 3-month simulations are performed: an 8 

ensemble in which the land states of the different members vary independently (W); an ensemble 9 

in which the same geographically- and temporally-varying land states are prescribed for each 10 

member (R), and an ensemble in which only the subsurface soil moisture values are prescribed 11 

for each member (S).  By quantifying the inter-ensemble similarity of precipitation time series 12 

within each ensemble and then comparing this similarity between ensembles, we can isolate the 13 

impact of the land surface on precipitation – we can quantify the degree to which the atmosphere 14 

responds consistently to anomalies in land states (hereafter referred to as the “land-atmosphere 15 

coupling strength”).  The companion paper (Koster et al., this issue) describes the experiment 16 

and analysis approach in detail and provides an overview of the model comparison. 17 

Note that the focus on subsurface moisture (ensemble S above) is of special interest.  It is 18 

well accepted that the variability of soil moisture is much slower than that of atmospheric states 19 

(Dirmeyer 1995).  Hope for improving the accuracy of seasonal forecasts lies partly with the 20 

“memory” provided by soil moisture.  By quantifying the impact of subsurface soil moisture on 21 



 5 

precipitation, GLACE helps evaluate a model’s ability to make use of this memory in seasonal 1 

forecasts. 2 

 Koster et al. (this issue) and Koster et al. (2004) highlight “hot spots” of land-atmosphere 3 

coupling -- regions of strong coupling between soil moisture and precipitation that are common 4 

to many of the AGCMs. What causes such commonalities, and how do they relate to 5 

climatological and hydrological regime? Which aspects of land surface and atmospheric 6 

parameterization cause the large model-to-model differences of coupling strength among the 7 

AGCMs? How are the signals that exist in the land surface states transmitted to and manifested 8 

in the atmosphere states? 9 

 Such critical questions, which arise naturally from a survey of the GLACE results and lie 10 

at the heart of our understanding of land-atmosphere feedback, are addressed in the present paper.  11 

First, section 2 addresses the geographical patterns of coupling strength seen in the models. 12 

Section 3 then provides an analysis of intermodel differences in coupling strength. Further 13 

discussion and a summary of our findings are presented in section 4.  14 

2. Commonalities in coupling strength 15 

 The multi-model synthesis used in the companion paper (Koster et al., this issue) proves 16 

to be an effective way to identify robust (across models) regions of significant soil moisture 17 

impact on precipitation and near-surface air temperature – the commonalities in geographic 18 

pattern synthesized from the approach are less subject to the quirks or deficiencies of any 19 

individual model.  We can apply the same multi-model analysis procedure here to the other 20 

model variables. As in the companion paper (see section 5 of Part 1), we first disaggregate 21 
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variables from each model to the same fine grid, one with a resolution of 0.5º · 0.5º.  We average 1 

the results computed on that grid with equal weights.   2 

 As explained in the companion paper, the variable Ωv measures the degree to which the 3 

sixteen time series for the variable v generated by the different ensemble members are similar, or 4 

coherent. Thus, Ωv(S)- Ωv(W) or Ωv(R)- Ωv(W) are measures of the control of land states on the 5 

atmospheric variable v. As in the companion paper, we computed Ωv and the standard deviation 6 

σv for each model across 224 aggregated 6-day totals (16 ensemble members times 14 intervals 7 

in each simulation time-series). 8 

The upper left panel of Fig. 1 shows the mean of ΩP(S) – ΩP(W) for precipitation across 9 

the 12 models, i.e., the model-average impact of subsurface soil moisture on precipitation.  This 10 

figure essentially repeats the contents of the top panel of Figure 10 from the companion paper.  11 

Notice that the larger soil moisture impacts on precipitation generally occur in the transition 12 

zones between humid and arid climates, such as the central Great Plains of North America, the 13 

Sahel in Africa, and the northern and western margins of the Asian monsoon regions. 14 

How can we characterize the evaporation signal that best serves as a link between soil 15 

moisture anomalies and precipitation – that best explains the geographical variations of ΩP(S) - 16 

ΩP(W) shown in the figure?  In Figure 2, we argue that such an evaporation signal (as a proxy 17 

for the full surface energy balance) must have two characteristics: it must respond coherently to 18 

soil moisture variations, and it must show wide temporal variations.  The four panels show 19 

idealized evaporation time-series for 16 parallel ensemble members under four situations: (i) a 20 

low coherence in the evaporation time series [i.e., a low value of ΩE(S) – ΩE(W)] and a low 21 
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variability of evaporation [i.e., a low value of σE(W)]., (ii) a low coherence but a high variability 1 

of evaporation, (iii) a high coherence yet a low variability of evaporation, and (iv) a high 2 

coherence and a high variability of evaporation.  Clearly, cases (i) and (ii) cannot lead to a robust 3 

precipitation response (across ensemble members) to soil moisture, given that evaporation is the 4 

key link between the two, and evaporation itself has no coherent response to soil moisture.  A 5 

coherent evaporation response, however, does not by itself guarantee a coherent precipitation 6 

response.  For case (iii), the evaporation response to soil moisture is robust, but the atmosphere 7 

would not see a strong signal at the surface due to the low evaporation variability.  Only the 8 

fourth situation provides a signal for the atmosphere that is both coherent and strong. 9 

We argue that for soil moisture to affect evaporation, both ΩE(S) – ΩE(W) and σE(W) 10 

must be suitably high.  In other words, the produc t (ΩE(S)- ΩE(W)) · σE(W) must be high.  We 11 

use this diagnostic product throughout this paper to characterize the ability of the evaporation 12 

signal to support land-atmosphere feedback.  (We assume here that σE(W) and σE(S) are similar; 13 

analysis of the model data confirms this.)  The product proves effective for our purposes, despite 14 

being a potentially suboptimal diagnostic – it may, for example, already contain some implicit 15 

feedback information through the potential co-evolution of σE and σP, and thus it may reflect in 16 

part the character of the atmosphere and its role in feedback.  Still, the other direction of 17 

causality (precipitation variability causing evaporation variability) is undoubtedly dominant, and 18 

regardless of the source of the evaporation variability, the product still serves as a 19 

characterization of the evaporation signal itself. 20 
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The upper right panel of Fig. 1 shows the global distribution of ΩE(S)- ΩE(W) (again, 1 

averaged across the models), and the lower left panel shows that for σE(W).  Neither diagnostic 2 

by itself explains all characteristics of the distribution of ΩP(S) – ΩP(W) (top left panel) .  The 3 

lower right panel shows the distribution of the product (ΩE(S)- ΩE(W)) · σE(W) averaged over 4 

the 12 models.  The spatial correlation between the geographical patterns of ΩP(S) – ΩP(W) and 5 

the product is 0.42, which is larger than that between ΩP(S) – ΩP(W) and either factor alone 6 

(0.36 and 0.2 for σE(W) and ΩE(S) – ΩE(W), respectively). 7 

Note that none of these spatial correlations is particularly large. The diagnostic product 8 

(ΩE(S)- ΩE(W)) · σE(W), however, will be shown to prove very effective in characterizing 9 

intermodel differences in coupling strength at a given location, much better than can either factor 10 

alone (see section 3).  The overall performance of the diagnostic product suggests that the 11 

coupling between precipitation and soil moisture is largely local and confirms that the coupling 12 

is strongest in regions having both a coherent evapotranspiration (ET) signal and a high ET 13 

variability. 14 

The scatter plots in Figure 3 illustrate further the control of hydrological regime on the 15 

product (ΩE(S)- ΩE(W)) · σE(W).  The lines represent a best fit through the mean of the 16 

dependent variable in bins of 200 points each.  A roughly linear inverse relationship is seen 17 

between the soil wetness and ΩE(S)– ΩE(W).  The scatter plot shows that ET is more sensitive to 18 

land state in dry climates than in areas with moderate soil wetness. The results are consistent 19 

with the findings of Dirmeyer et al. (2000), who showed that the sensitivity of surface fluxes to 20 

variations in soil moisture generally concentrates at the dry end of the range of soil moisture 21 
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index.  In contrast, the standard deviation of ET (σE) is not large for low soil moisture, simply 1 

because of the small values of ET in such regions.  Put together, the product 2 

(ΩE(S)-ΩE(W)) · σE(W) has minima for very wet and very dry soils, and it is largest for 3 

intermediate soil moisture values (degree of saturation between 0.1 and 0.4; see Figure 3c).  4 

Figure 3d shows, for comparison, how ΩP(S)– ΩP(W) varies with soil moisture; the relationship 5 

shows a hint of that seen for (ΩE(S)– ΩE(W)) · σE(W), particularly at the extremes. 6 

A study of Figure 3 thus suggests the following interpretation.  In wet climates, ET is 7 

controlled not by soil moisture but by atmospheric demand (as determined in part by net 8 

radiation) since soil moisture is plentiful there, and specifying surface land states in the 9 

numerical experiments has little impact there on ET and rainfall generation (cases i and ii in 10 

Figure 2). In dry climates, ET rates are sensitive to soil moisture, but the typical variations are 11 

generally too small to affect rainfall generation (case iii in Figure 2).  Only in the transition zone 12 

between wet and dry climates, where ET variations are suitably high but are still sensitive to soil 13 

moisture, do the land states tend to have strong impacts on precipitation. 14 

The conclusions above were obtained from a multi-model average. We now examine, 15 

with some simple statistical indicators, their relevance to individual models. First, consider the 16 

panels on the left in Fig. 4.  The top panels show the inter-model standard deviation of 17 

Ω(S)- Ω(W) among the 12 models, and the bottom panels show the ratio of the mean to the 18 

standard deviation.  The pattern of the inter-model standard deviation of ΩE(S)– ΩE(W) (left) 19 

largely resembles the field of ΩE(S)– ΩE(W) itself (Fig. 1), except for enhanced variability over 20 

arid regions.  The ratio serves as a measure of signal to noise, showing where there is the least 21 

uncertainty among models.  The pattern of the ratio resembles that of the mean in the upper right 22 
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panel in Fig. 1, with some shift away from the arid regions, giving a distribution that overlaps 1 

many of the world’s major agricultural areas.  2 

The implication of the left panels in Fig. 4 is that the regions of strong ET coherence are 3 

relatively robust among the models, and not an artifact of extreme values in a small number of 4 

models.  The same cannot be said about precipitation coherence (ΩP(S)-  ΩP(W)).  The right 5 

panels in Fig. 4 show the standard deviation and signal- to-noise ratio for precipitation coherence. 6 

The ratio of the mean to the standard deviation for precipitation coherence is much weaker than 7 

for ET and more dominated by noise. Only over a few regions (e.g., northern India, China, 8 

Pakistan, and parts of sub-Saharan Africa) are there sizeable areas that approach a ratio of unity 9 

(note the difference in scale).  Note also that the strongest signal-to-noise values are still located 10 

in regions with strong levels of 12-model mean precipitation coherence in the upper left panel of 11 

Fig. 1.  Large, inter-model variability, however, predominates over most of the globe. 12 

3. Comparison among GCMs 13 

 While the models show some similarities in the geographical pattern of land-atmosphere 14 

coupling strength, they also show some wide disparities.  Global maps of ΩP(S)-  ΩP(W) were 15 

provided in Fig. 5 of Part 1 for all twelve GCMs.  The major features found in the multi-model 16 

mean are seen in many of the models.  Some areas, though, such as the Northern Amazon and 17 

Orinoco Basins, show significant differences. Also, the coupling strength in general seems  18 

relatively large in the GFDL, NSIPP, and CAM3 models, whereas that for GFS/OSU seems very 19 

weak. Some models even show negative values in places, suggesting an increase of noise when 20 

land conditions are synchronized among ensemble members.  This may be the result of sampling 21 
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error or unrealistic vertical gradients, and thus fluxes, induced when land surface variables are 1 

specified without regard for the atmospheric conditions (e.g. Reale et al. 2002). 2 

Similar commonalities and disparities among AGCMs can be found in the impacts of soil 3 

moisture on ET.  We showed in section 2 that the diagnostic (ΩE(S)- ΩE(W)) · σE(W), which 4 

measures the degree to which the evaporation signal is both coherent and strong, explains much 5 

of the geographical variation in precipitation coherence for the mean of the models.  Figure 5 6 

shows global maps of this product for each model. The models tend to agree in the placement of 7 

larger values in the transition regions between humid and dry climates.  As for disparities, the 8 

GFDL model has the highest mean values for the product, whereas GFS/OSU has by far the 9 

lowest. Indeed, the low values for GFS/OSU by themselves can explain this model’s globally 10 

low precipitation coherence values. 11 

The diagnostic largely explains, at a given region, the intermodel differences in the land-12 

atmosphere coupling strength.  Figure 6 shows how (ΩE(S)-ΩE(W)) · σE(W)  varies with 13 

ΩP(S)- ΩP(W) for the average of global ice-free land points and for the three “hot spot” regions 14 

delineated by dashed lines in Fig. 1. The intermodel differences in (ΩE(S)-ΩE(W)) · σE(W)  15 

clearly explain much of the intermodel differences in ΩP(S)-ΩP(W).  Indeed, the square of the 16 

correlation coefficient between the two quantities are 0.77, 0.82 and 0.60 over the Sahel, 17 

northern India, and the central Great Plains of North America, respectively.  (Supplemental 18 

calculations show ΩE(S)- ΩE(W) alone would produce an r2 of 0.84, 0.56, and 0.38, respectively, 19 

while σE(W) alone would produce an r2 of  0.20, 0.61, and 0.40, respectively.) 20 
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Of course, the relationship is not perfect, due to sampling error, to the inability of the 1 

diagnostic to capture fully the evaporation signal’s impact on land-atmosphere feedback, and to 2 

the fact that the models also differ in the coupling mechanism between ET and precipitation 3 

(section 3.3).  Indeed, the separation of the pathway linking soil mois ture anomalies and 4 

precipitation generation into two parts – the segment between soil moisture anomalies and 5 

evaporation anomalies and that between evaporation anomalies and precipitation generation – is 6 

useful for understanding the intermodel differences in ΩP(S)- ΩP(W).  In essence, Figure 6 7 

suggests that while the first segment is the most important for explaining these differences, it is 8 

not all- important. 9 

In the remainder of this section, we focus on the models’ representations of these two 10 

segments. We construct a series of indices to measure the overall strength of each segment 11 

within each model, as well as the strength of coupling for the entire path from soil wetness to 12 

precipitation.  The results are summarized in Table 1. 13 

 14 

3.1 Soil-precipitation coupling: Net effect  15 

The first two columns after the list of models in Table 1 show the global mean of the 16 

precipitation coherence ΩP(S)- ΩP(W) calculated over all non-ice land points.  The next column 17 

provides the rank of the model (1 indicating the highest index, and thus the model with the 18 

strongest control of sub-surface soil moisture on precipitation).  The models are sorted by their 19 

overall score in this index.  Some grouping is evident; three models (GFDL, NSIPP and CAM3) 20 

show similarly high values of this index (between 0.032 and 0.040), and another group (CSIRO, 21 

UCLA, CCSR, COLA, GEOS, and BMRC) shows much lower values, ranging from 0.006-0.014.  22 
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The HadAM3 and GFS/OSU models show almost no impact of sub-surface soil wetness on 1 

precipitation.  The HadAM3 result is consistent with findings from a recent study (Lawrence and 2 

Slingo 2004) that showed how the inclusion of predicted vegetation phenology in this model had 3 

no impact on precipitation, even though soil wetness, surface latent heat flux, and near surface 4 

air temperature were all significantly affected over large areas of the globe. 5 

A comparison of the R and S experiments reveals how the specification of “faster” land 6 

variables (temperatures, etc.) affects the model rankings.  In Fig. 7, global means of ΩP(S)-ΩP(W) 7 

are plotted against ΩP(R)- ΩP(W) for each model. Similar groupings are evident.  Notice that the 8 

rankings are similar, despite the differences in the scales of the axes.  In general, if specifying 9 

subsurface soil moisture has a relatively large impact on the coherence of rainfall in a model, 10 

then the specification of all land variables in the model will also have relatively large impact on 11 

precipitation.  12 

 13 

3.2 Segment 1: Soil-ET coupling 14 

Again, the first segment of the path in soil-precipitation coupling is from soil wetness 15 

variations to ET variations, which we characterize with the diagnostic (ΩE(S)- ΩE(W)) · σσE(W).  16 

Columns 4 and 5 in Table 1 show respectively the global mean of this diagnostic for each model 17 

(calculated over all non-ice land points) and the rank of the model based on the diagnostic.  The 18 

GFDL model clearly has the strongest link between subsurface soil wetness and ET. There is a 19 

significant gap to the model in second place (CCCma) and then a fairly continuous spectrum in 20 

the diagnostic down to the 11th model (COLA).  GFS/OSU has a very weak coupling between 21 
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soil wetness and ET and is a clear outlier. Note that the centers of the topmost soil layers of the 1 

GFDL, BMRC, CCCma and HadAM3 models are deeper than 5 cm, meaning that for each of 2 

these four models, the soil moisture was continually specified in the topmost layer in the S 3 

experiment.   Thus, for these four models, bare soil evaporation was directly affected by the soil 4 

moisture specification.  5 

As discussed in section 2, the diagnostic (ΩE(S)- ΩE(W)) · σE(W) captures two separate 6 

aspects of the evaporation signal: its variability and its coherence.  Figure 8 shows, using bin 7 

curves, how these two components of the diagnostic tend to depend on soil moisture.  The 8 

variability of evaporation appears to be largest for intermediate soil wetness values, and the 9 

range in coherence is largest for low and intermediate values.  As should be expected, the bin 10 

curves differ between the models.  For most values of soil wetness, the GFDL model has the 11 

largest coherence of ET, and GFS/OSU has the smallest coherence. GFDL also shows the largest 12 

variability for evaporation.  The stratification of the curves in the bottom panel agrees well with 13 

the rankings of SW? ET in Table 1. 14 

Figure 9 shows, for each of the regions analyzed in Figure 6, the individual quantities σE 15 

and ΩE(S)- ΩE(W) for each model.  This breakdown helps us relate differences in the soil-ET 16 

coupling to differences in climate regime and model parameterization.  We speculate, in fact, 17 

that differences in σE relate mostly to differences in the models’ background climatologies 18 

(though σE may potentially be amplified through its coevolution with σP during feedback) and 19 

that differences in ΩE(S)- ΩE(W) relate mostly to differences in incident radiative energy and in 20 

the details of the land surface parameterization – particularly, in those details defining the 21 
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sensitivity of evaporation to soil moisture variations.  For example, notice that globally BMRC 1 

tends to have moderately high coherence in its evaporation fluxes (ΩE(S)- ΩE(W)) but very low 2 

variability (σE) – the type of behavior idealized in the third panel of Figure 2.  The low σE for 3 

BMRC presumably reflects the relatively low mean and variability of the precipitation forcing 4 

(not shown) for that model over most of the areas examined – i.e., it results from the model’s 5 

background climatology.  The same arguments regarding evaporation variability apply, to a 6 

degree, to the CCSR/NIES model, particularly over northern India and the Sahel.  The GFDL 7 

model, on the other hand, shows relatively high precipitation variability on a global scale, 8 

helping to promote evaporation variability.  Coupled with the moderate-to-high ΩE(S)- ΩE(W) 9 

values for this model, the diagnostic (ΩE(S)- ΩE(W)) · σE(W) is especially high, promoting 10 

strong land-atmosphere feedback. 11 

Now consider the COLA model.  Evaporation (and precipitation) variability in the areas 12 

studied is not particularly small for this model, but the evaporation coherence values are (case ii 13 

in Fig 2).  These low coherence values probably reflect in large part this model’s relatively high 14 

inter-ensemble variability of net radiation (not shown).   15 

Again, details of the land model parameterization – particularly those associated with 16 

soil-water limited transpiration – presumably explain most of the intermodel differences in 17 

ΩE(S)- ΩE(W).  The parameterization in the GFS/OSU model, for example, must be responsible 18 

for this model’s very low ΩE(S)- ΩE(W).  (Curiously, though, a later version of the OSU land 19 

model – the NOAH LSM – shows substantial evaporation sensitivity to soil moisture variations 20 

when coupled to NCEP’s Eta regional model [Berbery et al., 2003].)  A proper analysis of such 21 
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model parameterization differences would necessarily be complex and will not be addressed in 1 

this paper. 2 

Other climatic factors may also lead to intermodel differences in (ΩE(S)- ΩE(W)) · σE(W).  3 

For example, because this diagnostic peaks at intermediate values of soil wetness (Figures 3 and 4 

8), the model whose climatology produces the highest fractional area with such soil wetness 5 

values might produce the highest average va lue for the diagnostic. Also, if a model shows large 6 

coherence in evaporation rates in the free-running W experiment (ΩE(W)) due to the 7 

initialization procedure or due to the effects of the oceanic boundary conditions and seasonal 8 

radiation forcing applied, the difference ΩE(S)- ΩE(W) may have a small upper potential limit.  9 

Careful analysis of the model output, however, shows that neither factor has a first-order impact 10 

on the ranking of the models.  11 

Finally, a comparison of the evaporation diagnostics computed from the R and S 12 

experiments provides some interesting insights into the control of evaporation in the different 13 

models.  Fig. 10a shows the global mean (over non- ice land points) of (ΩE(S)- ΩE(W)) · σE(W) 14 

versus the corresponding global mean of (ΩE(R)- ΩE(W)) · σE(W).  Because more variables (i.e., 15 

the fast variables, including surface soil moisture, skin temperature and canopy interception) are 16 

specified in the R experiment than in the S experiment, we expect the evaporation coherence to 17 

be larger for the R experiment, and thus we expect (ΩE(R)- ΩE(W)) · σE(W) to be larger than 18 

(ΩE(S)- ΩE(W)) · σE(W).  This is seen in general on the global scale.  Some models (CAM3, 19 

GFS/OSU, and COLA) show a relatively large difference between (ΩE(R)- ΩE(W)) · σE(W) and 20 

(ΩE(S)- ΩE(W)) · σE(W), suggesting that evaporation in these models is more strongly controlled 21 
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by the fast variables.  The higher values of the diagnostic for the R experiment have consequent 1 

impacts on the land-atmosphere coupling strength in that experiment, ΩP(R)- ΩP(W) (Figure 7). 2 

 Similar behavior is observed over the Great Plains and the Sahel (Fig. 10bd).  3 

Interestingly, the specification of the fast variables over India (Fig. 10c) apparently has an impact 4 

on only a handful of models (COLA, UCLA, GFS/OSU, CAM3, and CCCma) – the rest of the 5 

models fall close to the 1:1 line. 6 

 7 

3.3 Segment 2: ET-precipitation coupling 8 

The land surface model and the background climatology may combine to produce a 9 

strong and coherent evaporation signal, as in the lowest panel of Figure 2, but for this to be 10 

translated into an impact on precipitation, the second segment of land-atmosphere feedback – the 11 

link between evaporation and precipitation – must be strong.  Returning to Table 1, we present 12 

two different indices to measure this link.  Both indices are inferred from joint analysis of 13 

precipitation and ET coherences. 14 

The first index is simply the spatial pattern correlation between (ΩE(R)- ΩE(W)) · σE(W) 15 

and ΩP(R)-  ΩP(W) across the globe. The idea is simple: if the control of ET on precipitation is 16 

local and strong, then the spatial patterns of the evaporation diagnostic and the precipitation 17 

coherence should be highly correlated. The correlations from the R experiment are similar to 18 

those from the S experiment; we use those from the R experiment here simply because they will 19 

not be spuriously high due to the response of bare soil evaporation or interception loss to incident 20 

precipitation.   21 
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The second index is the ratio between the global means (over non- ice land points) of 1 

ΩP(S)-  ΩP(W) and (ΩE(S)- ΩE(W)) · σE(W). This gives a global measure of how the second 2 

segment of land-atmosphere coupling, that is between evaporation and precipitation, degrades 3 

the link between soil moisture and precipitation, without regard for the “localness” or 4 

“remoteness” of the evaporation impacts. 5 

Table 1 shows that the two indices produce similar rankings among the models in most 6 

cases.  The CAM3 and NSIPP models rank considerably higher than the other models in both 7 

indices, suggesting that their parameterizations for moist convection, boundary layer physics, 8 

and/or other atmospheric processes are especially sensitive to evaporation variations at the land 9 

surface.  GEOS and HadAM3 show much lower rankings for the ET? Precip. index than for the 10 

SW? ET index, suggesting that the ET-precipitation connection is weak enough to lose whatever 11 

signal is transmitted from soil wetness to ET.  Both CAM3 and COLA show strong values of the 12 

ET-Precip. indices but do not rank high in the SW? ET index, suggesting that these models 13 

might have an even stronger coupling between soil wetness and precipitation if a different land 14 

surface parameterization were used or (in the case of the COLA model) if the net radiation was 15 

less variable.  Finally, the small values of all indices for GFS/OSU and BMRC suggest that the 16 

lack of signal in ET may prevent any measure of ET? Precip coupling; again, a change of land 17 

surface scheme might alter dramatically the behavior of these two models.   18 

The ratio-based index (ET? Precip)2 can be used to interpret the scatter plot in the upper 19 

left panel in Fig. 6.  That plot shows the relationship between globally-averaged numerator 20 

ΩP(S)-  ΩP(W) and denominator (ΩE(S)- ΩE(W)) · σE(W) for the different models; the fact that 21 

the r2 value for the plot is about 0.45 implies that the SW? ET segment of land-atmosphere 22 

coupling is responsible for about half of the intermodel variations in coupling strength on the 23 
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global scale.  (Again, in the individual hotspot regions, the SW? ET segment is responsible for 1 

much more.)  The relationship in the top left panel of Figure 6 is not perfect.  The CAM3 and 2 

NSIPP models lie well above a fitted line through the points.  The interpretation of the ratio-3 

based index (ET? Precip)2 explains why: these two models have atmospheres that are (relatively) 4 

sensitive to evaporation variations.  Similarly, the fact that GEOS and HadAM3 lie below the 5 

fitted line can be explained by the relative insens itivity of their atmospheres to evaporation 6 

variations. 7 

Figure 11 summarizes the results of separating land-atmosphere feedback into the two 8 

segments. The x-axis represents the first segment of the coupling, the link between soil wetness 9 

and ET. The y-axis represents the second segment, the link between ET and precipitation as 10 

provided by the correlation-based diagnostic (ET? Precip)1. The number near each model name 11 

in Fig. 11 shows how the model ranks in total coupling strength over all ice-free land points 12 

(from Table 1). 13 

The coupling strength in a model, of course, is controlled by the nature of both segments 14 

of the coupling.  The closer a model is to the upper right corner of the plot, the more likely a soil 15 

wetness anomaly can propagate through the ascending branch of the hydrologic cycle and affect 16 

precipitation.  The figure immediately highlights some of the results outlined above; for example, 17 

the low coupling strengths of the BMRC and COLA models results from their weak soil 18 

moisture - evaporation connection, whereas the high coupling strength for the GFDL model 19 

results from its very strong soil moisture - evaporation connection.  Coupling strength in the 20 

NSIPP and CAM3 models is strong mostly because of the strong connection between ET and 21 

precipitation in these two models. The HadAM3, on the other hand, shows the weakest coupling 22 
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between ET and precipitation, and it thus has one of the weakest coupling strengths. The 1 

GFS/OSU model lies near the origin and has the weakest coupling strength because both soil 2 

moisture - evaporation connection and coupling between ET and precipitation are weak. 3 

 4 

3.4 Link between differences in the coupling strength and AGCM parameterizations.  5 

Coupling strength is a net result of complex interactions between numerous process 6 

parameterizations in the AGCM. We have discerned different behaviors of land-atmosphere 7 

coupling among the 12 GCMs in this study and have broken down the contributions to this 8 

coupling from the atmospheric and terrestrial branches of the hydrologic cycle.  Can we identify 9 

the process parameterizations that are mostly responsible for the differing coupling strengths? 10 

We now examine subsurface soil wetness and moist convective precipitation with this in mind. 11 

The surface component of land variability cannot be a source of useful long-term 12 

memory in the climate system.  However, comparison of its role to that of subsurface soil 13 

wetness in the coherence of ET is a useful metric for discriminating among the various model 14 

behaviors.    Examination of the patterns of the ratio (ΩE(S)-  ΩE(W))/( ΩE(R)-  ΩE(W)) in Fig. 15 

12 shows that the ET of the GFS/OSU, COLA, and CAM3 models is dominated by surface state 16 

variable controls (surface soil moisture, skin temperature and canopy interception), consistent to 17 

what we found in Fig. 10.  Regions for which the models have ET rates less than 1 mm d-1 are 18 

masked in the figure, since such low ET rates can produce spurious ratios.  The models in the 19 

main cluster are distinguished by their strong subsurface soil moisture impacts in semi-arid and 20 

semi-humid regions, but generally not in the deep tropics and other humid zones. CSIRO shows 21 

a pattern that is somewhat reversed, with high values of the ratio over the many humid regions, 22 
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and low values over grasslands and agricultural regions. Overall, these results suggest that 1 

certain ET parameterization frameworks – frameworks defined by imposed vegetation maps, 2 

fractional vegetation coverage, vertical structure of soil layers, and so on – might favor the 3 

coupling between sub-surface soil moisture and surface moisture fluxes (e.g., through 4 

transpiration), while others might favor surface evaporation.  Note that it is not the mean ET rate, 5 

but the variability, particularly the covariability between soil wetness, ET and ultimately 6 

precipitation, that determines the strength of the coupling. 7 

 Given that moist convective precipitation is often instigated by variations in near surface 8 

air temperature and humidity, whereas large scale condensation is strongly controlled by 9 

variations in the general circulation, we might naturally expect moist convection to be a key 10 

component of the pathway linking soil moisture variations and precipitation.  Figure 13 shows 11 

the global average of ΩP(S)-  ΩP(W) calculated separately from total precipitation, from 12 

convective precipitation, and from large-scale precipitation.  (Note that only five models reported 13 

the precipitation components separately.)  The fact that ΩP(S)-  ΩP(W) tends to be larger for 14 

convective precipitation than for large-scale precipitation supports the idea that convective 15 

precipitation is more amenable than large-scale condensation to land surface moisture variations. 16 

In the bottom panel of Fig. 13, the ΩP(S)-  ΩP(W) values are weighted by the fractional 17 

contributions of the convective precipitation component to total precipitation. This plot shows 18 

that convective precipitation bears most of the signal of soil moisture’s impact on precipitation, 19 

due in large part to the dominance of convective precipitation during boreal summer.  Based on 20 

the bottom plot, the coupling between surface fluxes and precipitation is indeed via the 21 

convective precipitation scheme in the AGCMs.  22 
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4. Summary 1 

Through coordinated numerical experiments with a dozen AGCMs as part of the GLACE 2 

project, the impacts of soil moisture conditions on rainfall generation have been examined for the 3 

boreal summer season. These impacts are found to be a function of hydroclimatological regime 4 

and are heavily affected by the complex physical process parameterizations implemented in the 5 

AGCM.  6 

In general, impacts of soil moisture on rainfall are strong only in the transition zones 7 

between dry and wet areas. Multi-model analysis shows that the existence of “hot spots” of land-8 

atmosphere coupling in these areas is due to the coexistence of a high sensitivity of ET to soil 9 

moisture and a high temporal variability of the ET signal.  In wet areas, ET is insensitive to soil 10 

moisture variations, and in dry areas, the ET variability is too weak. 11 

The impact of soil moisture on rainfall varies widely from model to model. The GFDL, 12 

CAM3, and NSIPP models have the strongest land-atmosphere coupling strengths, and 13 

GFS/OSU, HadAM3, BMRC, and GEOS have the weakest (Table 1).  The breakdown of the 14 

coupling mechanism into two segments, the link between soil moisture and evaporation and the 15 

link between evaporation and precipitation, helps to identify some of the reasons for these 16 

differences.  Some models (CAM3, NSIPP) have a high coupling strength because their modeled 17 

atmospheres are strongly sensitive to evaporation variations, whereas the atmospheres of other 18 

models (HadAM3, GEOS) are relatively insensitive to evaporation variations, leading to a weak 19 

coupling strength.  Most of the intermodel differences in coupling strength, however, can be 20 

explained by intermodel differences in the nature of the evaporation signal itself, as characterized 21 

by the diagnostic product (ΩE(S)- ΩE(W)) · σE(W).  Figure 6 suggests that in the hotspot regions 22 
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of strong coupling, intermodel variations in the diagnostic product can explain about 80% of 1 

intermodel variations in coupling strength.  Figures 9a and 11 summarize the impacts of the 2 

various factors on globally-averaged coupling strength for each model. 3 

The fact that convective precipitation bears most of the signal of soil moisture’s impact 4 

on precipitation suggests that the coupling between surface fluxes and precipitation is indeed 5 

mostly via convective precipitation in the AGCMs. Examination of the relative controls of 6 

subsurface soil wetness and the faster surface variables on ET coherence shows that certain ET 7 

formulations favor the coupling between sub-surface soil moisture and surface moisture fluxes, 8 

while others do not.  Further analysis of intermodel variations in vegetation coverage, root zone 9 

depth, and so on may be instructive in this regard. 10 

Indeed, for the understanding of land-atmosphere coupling strength, we can identify 11 

several broader issues that require further attention.  First, an objective quantification of coupling 12 

strength from observational data needs to be obtained; its absence is a major obstacle to the 13 

evaluation of model performance. Second, land-atmosphere coupling strength should be 14 

quantified for other seasons; presumably it will be weaker during seasons that feature less moist 15 

convection, though preliminary experiments with the CCSR/NIES model (not shown) suggest 16 

otherwise. Third, for a more detailed analysis of coupling strength in a more controlled setting, 17 

different configurations of convective precipitation schemes, boundary layer schemes, and ET 18 

formulations should be applied within individual models. 19 
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 1 

Model SW? Precip. Rank SW? ET Rank (ET? Precip.)1 Rank (ET? Precip.)2 Rank 
GFDL 0.040 1 0.166 1 0.197 7 0.233 4 
NSIPP 0.034 2 0.066 4 0.455 2 0.515 2 
CAM3 0.032 3 0.052 8 0.685 1 0.593 1 

CCCma 0.024 4 0.110 2 0.379 4 0.209 6 
CSIRO 0.014 5 0.058 5 0.096 10 0.241 3 
UCLA 0.011 6 0.054 7 0.294 6 0.200 7 
CCSR 0.009 7 0.050 9 0.407 3 0.173 8 
COLA 0.009 8 0.038 11 0.311 5 0.220 5 
GEOS 0.006 9 0.088 3 0.143 9 0.068 10 

BMRC 0.005 10 0.043 10 0.156 8 0.114 9 
HadAM3 0.002 11 0.057 6 -0.038 12 0.034 11 

GFS -0.004 12 0.013 12 0.040 11 -0.286 12 

Table 1. Globally-averaged (over non- ice land points) land-atmosphere coupling strength for all 2 
twelve models and in each segment of the path from soil wetness to precipitation, namely soil 3 
wetness - ET and ET – Precipitation.  (See text for details.) 4 

 5 
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 1 

Fig 1. Average of ΩP(S)-  ΩP(W), ΩE(S)-  ΩE(W), standard deviation of ET,  and the weighted 2 
coherence diagnostic (ΩE(S)- ΩE(W)) · σE(W) across all twelve models. 3 
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 1 

Fig 2. Time series of evaporation for different ensemble members under four situations: (i) low 2 
ΩE with low σE, (ii) low ΩE with high σE, (iii) high ΩE with low σE, (iv) high ΩE with high σE. 3 
(see text for detail). 4 
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 2 

 3 

Fig 3. Scatter plots of ΩE(S)– ΩE(W), σE , and (ΩE(S)– ΩE(W)) · σE against mean soil wetness. 4 
All variables are averaged across the twelve models. 5 

 6 
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 1 

Fig 4. Inter-model standard deviation of ΩE(S)-  ΩE (W) and ΩP(S)-  ΩP(W) among the twelve 2 
models (top) and the ratio of the mean to the standard deviation (bottom). 3 

 4 
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 1 

Fig. 5: Global distribution of (ΩE(S)– ΩE(W)) · σE for the models participating in GLACE.2 
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 1 

 2 

Fig. 6 Areal average of (ΩE(S)-  ΩE (W)) · σE  vs. ΩP(S)-  ΩP(W) over global ice-free land points 3 
and some “hot spot” regions (indicated by dashed lines in Fig. 1) for all twelve models. 4 
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 1 

Fig. 7 Global average of ΩP(S)-  ΩP(W) vs. ΩP(R)-  ΩP(W) over ice-free land points for all 2 
twelve models. 3 
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 3 

Fig. 8 Areal mean of ΩE(S)-  ΩE (W), σE, and (ΩE(S)-  ΩE (W)) · σE  for different climate 4 
regimes. (The values for UCLA are not shown because soil moisture values for this model were 5 
not available.) 6 



 35 

 1 

 2 

 3 

Fig. 9 Areal average of ΩE(S)-  ΩE (W) vs. σE over global ice-free land points and some “hot 4 
spot” regions (indicated by dashed lines in Fig. 1) for all twelve models.5 
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 2 

 3 

 Fig. 10 a.   (ΩE(S)-  ΩE(W)) · σE vs. (ΩE(R)-  ΩE(W)) · σE  for all twelve models, averaged over 4 
(a) global ice-free land points, (b) the Great Plains, (c) northern India, and (d) the Sahel.  The 5 
boundaries of the final three regions are demarcated in Figure 1.  6 

 7 
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 1 

Fig. 11 Global average of (ΩE(S)-  ΩE(W)) · σE over ice-free land points (a measure of the 2 
strength of the soil moisture-evaporation connection) versus spatial pattern correlation between 3 
(ΩE(R)-  ΩE(W)) · σE and ΩP(R)-  ΩP(W) (a measure of the strength of the evaporation-4 
precipitation connection) for all twelve models. 5 
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1 
Fig. 12 Global distribution of )]()([)]()([ WRWS EEEE Ω−ΩΩ−Ω  for the models participating 2 
in GLACE. 3 
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 1 

 2 

Fig. 13 Global average over ice-free land points of ΩP(S)-  ΩP(W) calculated separately from 3 
total precipitation, convective and large-scale precipitation components for the models that 4 
reported them separately. 5 


